Dual method for continuous-time Markowitz’s Problems with nonlinear wealth equations

نویسنده

  • Shaolin Ji
چکیده

Continuous-time mean-variance portfolio selection model with nonlinear wealth equations and bankruptcy prohibition is investigated by the dual method. A necessary and sufficient condition which the optimal terminal wealth satisfies is obtained through a terminal perturbation technique. It is also shown that the optimal wealth and portfolio is the solution of a forwardbackward stochastic differential equation with constraints.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit solutions for continuous time mean-variance portfolio selection with nonlinear wealth equations

This paper concerns the continuous time mean-variance portfolio selection problem with a special nonlinear wealth equation. This nonlinear wealth equation has a nonsmooth coefficient and the dual method developed in [6] does not work. We invoke the HJB equation of this problem and give an explicit viscosity solution of the HJB equation. Furthermore, via this explicit viscosity solution, we obta...

متن کامل

Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model

In defined contribution (DC) pension schemes, the financial risk borne by the member occurs during the accumulation phase. To build up sufficient funds for retirement, scheme members invest their wealth in a portfolio of assets. This paper considers an optimal investment problem of a scheme member facing stochastic inflation under the Markowitz mean–variance criterion. Besides, we consider a mo...

متن کامل

Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity  

Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...

متن کامل

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

Solving a nonlinear inverse system of Burgers equations

By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008